3.508 \(\int \frac{x^4}{(a+b x^2)^{5/2}} \, dx\)

Optimal. Leaf size=64 \[ -\frac{x}{b^2 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{5/2}}-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}} \]

[Out]

-x^3/(3*b*(a + b*x^2)^(3/2)) - x/(b^2*Sqrt[a + b*x^2]) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0204295, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {288, 217, 206} \[ -\frac{x}{b^2 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{5/2}}-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^2)^(5/2),x]

[Out]

-x^3/(3*b*(a + b*x^2)^(3/2)) - x/(b^2*Sqrt[a + b*x^2]) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(5/2)

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^4}{\left (a+b x^2\right )^{5/2}} \, dx &=-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}}+\frac{\int \frac{x^2}{\left (a+b x^2\right )^{3/2}} \, dx}{b}\\ &=-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}}-\frac{x}{b^2 \sqrt{a+b x^2}}+\frac{\int \frac{1}{\sqrt{a+b x^2}} \, dx}{b^2}\\ &=-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}}-\frac{x}{b^2 \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{b^2}\\ &=-\frac{x^3}{3 b \left (a+b x^2\right )^{3/2}}-\frac{x}{b^2 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.110533, size = 80, normalized size = 1.25 \[ \frac{3 \sqrt{a} \left (a+b x^2\right ) \sqrt{\frac{b x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )-\sqrt{b} x \left (3 a+4 b x^2\right )}{3 b^{5/2} \left (a+b x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^2)^(5/2),x]

[Out]

(-(Sqrt[b]*x*(3*a + 4*b*x^2)) + 3*Sqrt[a]*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*ArcSinh[(Sqrt[b]*x)/Sqrt[a]])/(3*b^(
5/2)*(a + b*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 54, normalized size = 0.8 \begin{align*} -{\frac{{x}^{3}}{3\,b} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}-{\frac{x}{{b}^{2}}{\frac{1}{\sqrt{b{x}^{2}+a}}}}+{\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){b}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^2+a)^(5/2),x)

[Out]

-1/3*x^3/b/(b*x^2+a)^(3/2)-x/b^2/(b*x^2+a)^(1/2)+1/b^(5/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.32188, size = 444, normalized size = 6.94 \begin{align*} \left [\frac{3 \,{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt{b} \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) - 2 \,{\left (4 \, b^{2} x^{3} + 3 \, a b x\right )} \sqrt{b x^{2} + a}}{6 \,{\left (b^{5} x^{4} + 2 \, a b^{4} x^{2} + a^{2} b^{3}\right )}}, -\frac{3 \,{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) +{\left (4 \, b^{2} x^{3} + 3 \, a b x\right )} \sqrt{b x^{2} + a}}{3 \,{\left (b^{5} x^{4} + 2 \, a b^{4} x^{2} + a^{2} b^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*(b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - 2*(4*b^2*x^3 + 3
*a*b*x)*sqrt(b*x^2 + a))/(b^5*x^4 + 2*a*b^4*x^2 + a^2*b^3), -1/3*(3*(b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(-b)*arcta
n(sqrt(-b)*x/sqrt(b*x^2 + a)) + (4*b^2*x^3 + 3*a*b*x)*sqrt(b*x^2 + a))/(b^5*x^4 + 2*a*b^4*x^2 + a^2*b^3)]

________________________________________________________________________________________

Sympy [B]  time = 2.77414, size = 303, normalized size = 4.73 \begin{align*} \frac{3 a^{\frac{39}{2}} b^{11} \sqrt{1 + \frac{b x^{2}}{a}} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{3 a^{\frac{39}{2}} b^{\frac{27}{2}} \sqrt{1 + \frac{b x^{2}}{a}} + 3 a^{\frac{37}{2}} b^{\frac{29}{2}} x^{2} \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{3 a^{\frac{37}{2}} b^{12} x^{2} \sqrt{1 + \frac{b x^{2}}{a}} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{3 a^{\frac{39}{2}} b^{\frac{27}{2}} \sqrt{1 + \frac{b x^{2}}{a}} + 3 a^{\frac{37}{2}} b^{\frac{29}{2}} x^{2} \sqrt{1 + \frac{b x^{2}}{a}}} - \frac{3 a^{19} b^{\frac{23}{2}} x}{3 a^{\frac{39}{2}} b^{\frac{27}{2}} \sqrt{1 + \frac{b x^{2}}{a}} + 3 a^{\frac{37}{2}} b^{\frac{29}{2}} x^{2} \sqrt{1 + \frac{b x^{2}}{a}}} - \frac{4 a^{18} b^{\frac{25}{2}} x^{3}}{3 a^{\frac{39}{2}} b^{\frac{27}{2}} \sqrt{1 + \frac{b x^{2}}{a}} + 3 a^{\frac{37}{2}} b^{\frac{29}{2}} x^{2} \sqrt{1 + \frac{b x^{2}}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**2+a)**(5/2),x)

[Out]

3*a**(39/2)*b**11*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a*
*(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) + 3*a**(37/2)*b**12*x**2*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a)
)/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) - 3*a**19*b**(23/
2)*x/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a)) - 4*a**18*b**(
25/2)*x**3/(3*a**(39/2)*b**(27/2)*sqrt(1 + b*x**2/a) + 3*a**(37/2)*b**(29/2)*x**2*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]  time = 2.56272, size = 69, normalized size = 1.08 \begin{align*} -\frac{x{\left (\frac{4 \, x^{2}}{b} + \frac{3 \, a}{b^{2}}\right )}}{3 \,{\left (b x^{2} + a\right )}^{\frac{3}{2}}} - \frac{\log \left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right )}{b^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(5/2),x, algorithm="giac")

[Out]

-1/3*x*(4*x^2/b + 3*a/b^2)/(b*x^2 + a)^(3/2) - log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(5/2)